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Abstract

The Engineer Research and Development Center (ERDC) Environmental
Laboratory (EL) assisted the U.S. Army Corps of Engineers (USACE),
Portland District (CENWP) in updating a CE-QUAL-W2 (W2) model of
Lost Creek Lake based on a previous version of W2. The model was
calibrated using data from calendar year (CY) 2001 validated with data
from calendar years 2003 and 2010. One set of W2 parameters were
successfully applied to all calendar year types (2001 is a dry year; 2003 is a
normal year; and 2010 is a wet year). This model and the corresponding
study results provided CENWP with more refined estimates of water
temperatures so that more defendable water temperature targets can be
discussed with the state of Oregon. This is extremely important because
the Rogue and Applegate temperature Total Maximum Daily Loads and
Rogue Spring Chinook Conservation Plan require USACE to review the
Rogue Basin Project operations to determine whether improvements to
downstream temperature can be achieved for the benefit of endangered
fish. In addition to modeling the basic calibration for three years, a
modified version of W2 was used to create a predictive model to determine
the best blending of the intake ports to meet the temperature targets.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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Unit Conversion Factors

Multiply By To Obtain

acre-feet 1,233.5 cubic meters

cubic feet 0.02831685 cubic meters

degrees Fahrenheit (F-32)/1.8 degrees Celsius

feet 0.3048 meters

gallons (U.S. liquid) 3.785412 E-03 cubic meters

square miles 2.589998 E+06 square meters

Langley per day 0.48 watts per square meter
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14WS
AM
BOD
CENWP
CY
DO
ELWS
ERDC
ISS
LCL
LCLM
NH4
NO;
OM
RO
STR:
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14th Weather Squadron

Applegate Lake Model

Biochemical Oxygen Demand
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Calendar year (January 1 through December 31)
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Water surface elevation
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Inorganic suspended solids
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Regulating Outlet
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of 1852.5 ft

Represents the fixed invert intake with centerline elevation
of 1797.5 ft

Represents the fixed invert intake with centerline elevation
of 1737.5 ft

Represents the fixed invert intake with centerline elevation
of 1647.5 ft

Represents the turbidity conduit intake with centerline
elevation of 1602.5 ft
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1.1

1.2

Introduction

Objectives

The goal of this project is to develop and calibrate current W2 models for
Lost Creek Lake and Applegate Lake so these models can be used to fully
evaluate the effects of operational changes on release temperatures at
William L. Jess Dam on the Rogue River.

Background

The Rogue and Applegate temperature Total Maximum Daily Loads
(TMDL) and Rogue Spring Chinook Conservation Plan require the USACE
to review Rogue Basin Project temperature operations to determine
whether improvements to downstream temperature can be achieved for
the benefit of fish (ODEQ 2008)(ODFW 2007)(USACE and ODEQ 2009).
Oregon Department of Fish and Wildlife (ODFW) will probably also
request that the USACE review project temperature operations in
connection with the Rogue Fall Chinook Conservation Plan, which was
adopted in January 2013 (ODFW 2013).

In the TMDL, the state of Oregon stated that the Corps could evaluate the
prescribed temperature targets. This modeling effort refines the estimates
of water temperatures at the site of USACE dams in the Rogue Basin and
provides more defendable water temperature targets for discussion with
the state of Oregon.

Lost Creek Lake is located twenty eight miles northeast of Medford,
Oregon on the Rogue River in Jackson, County, Oregon approximately
157.2 miles upstream of its mouth. The William L. Jess Dam was
constructed with earth and rock fill and is about 3,600 ft long and about
345 ft high. The primary authorized purposes of the dam are flood damage
reduction, fisheries enhancement, irrigation, and municipal and industrial
water supply; hydropower, water quality, and recreation are secondary
authorized purposes. At maximum pool, Lost Creek Lake is 10 miles long,
3,430 acres, and stores approximately 465,000 acre-ft of water (USACE
1991). Figure 1 is a Google Earth screenshot of the project study area.
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Figure 1. Google Earth image of the Lost Creek Reservoir project study area.

Approach

In order to determine whether the Corps can meet TMDL requirements
through operational changes, it was necessary to develop water tempera-
ture models of each reservoir. To date, the Corps has in place CE-QUAL-
W2 (W2) temperature models for both Lost Creek and Applegate projects.
Both projects also have selective withdrawal structures, which allow the
projects to release water from fixed elevations in the reservoirs. Both
models were run using previous versions of W2 and were calibrated to
earlier datasets (90s and prior).
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2.1

2.2

Model Selection and Development

W2 is the code selected to develop the Lost Creek Lake Model (LCLM). W2
is a 2D longitudinal-vertical hydrodynamics and water quality model. It is
capable of modeling basic eutrophication processes and is best suited for
long, narrow waterbodies that do not exhibit substantial lateral variation.
W2 has been applied to hundreds of studies on various types of
waterbodies (rivers, reservoirs, lakes, and estuaries) all over the world. For
a list of the model applications, see the W2 website: http://www.ce.pdx.edu/w2/.

CE-QUAL-W2 description

The numerical modeling code known as W2, version 3.7 (Cole and Wells
2011), was configured for application to Lost Creek Lake. W2 uses a finite
difference solution of the laterally averaged equations of fluid motion (Cole
and Wells 2013). It allows for application to very complex water systems
because it accommodates multiple branches and multiple waterbody types.
W2 allows the user to set up variable grid spacing (longitudinally and
vertically), time variable boundary conditions, numerous inflows and
outflows, and time variable concentrations for each water quality
constituent of interest. W2 (V3.7) contains a user-defined port selection
algorithm, which allows the user to specify a varying number of elevations
for dam structures. Although this feature is not utilized in the calibration,
future scenarios may benefit. In addition to water temperature, W2 is
capable of modeling water surface elevation, flow, and twenty-eight water
quality constituents such as total dissolved solids (TDS), inorganic
suspended solids (ISS), ammonium (NH4), biochemical oxygen demand
(BOD), nitrate (NO3), phytoplankton, dissolved oxygen (DO), and organic
matter (OM). This study focuses only on temperature; consequently, the
other constituents will not be discussed.

Project approach

W2 is well-suited for application to Lost Creek Lake for the following
reasons:

1. W2 is appropriate for modeling narrow waterbodies with spatially
varying depths. Lost Creek Lake is estimated to be 1.5 miles wide at its
widest part, but it varies greatly in depths along the length of the
reservoir.
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2.3

2. W2 is capable of modeling hydrodynamics of a reservoir quite well.

3. W2 has been applied to hundreds of systems and is well known,
understood, and widely accepted.

4. W2 is capable of providing a wide variety of model output for
comparison to observed data.

5. W2 can simulate various responses due to changes in loads and rates.

Three in-lake monitoring stations (LSCR3, LSCR9, and LSCR11) were used
for evaluating model performance during calibration. Although
temperature data was available from LSCR2, the model grid did not
encompass that station (discussed later). Therefore, the LSCR2 data was
not used in the calibration process. Temperature data at the dam and
downstream from the dam were also used for calibration. The locations of
the sites are shown in Figure 2.

Figure 2. In-lake profile monitoring stations.
Site locations provided by Kinsey Friesen (CENWP).

‘LSCRZ

¥
r e
S

JLSCRS™

*LSCR 11

Calibration strategy

Several factors were used to determine which calendar years (CY) were used
to calibrate and validate the model. The largest limiting factor was the
availability of observed data. Since more data was available for 2001, CYo1
was used to develop a calibrated model. Once an acceptable set of calibra-
tion parameters were found, the same set of model parameters were used
for CYo3 and CY10. Each of the years represents various water year types:
2001 was a dry year, 2003 was an average year, and 2010 was a wet year.
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3.1

Data Analysis and Model Preparation

This section reviews data availability and their use in defining the
calibration input files. W2 has several data requirements to meet before
simulations can begin:

1. Bathymetry of the waterbody(ies)

2. Flow and temperature characteristics for boundaries, major tributaries,
and point sources

3. Dam operations and structure locations

4. Stage data

5. Meteorological conditions: air temperature, dew point temperature,
wind speed, wind direction, cloud cover, and short wave solar radiation
(if available)

Model geometry
3.1.1 Bathymetry data

The bathymetry file for the LCLM was originally developed by Mike
Schneider (USACE) for the original W2 model of Lost Creek Lake. Due to
lack of documentation, it is unknown where he obtained the bathymetry
data (sediment range analysis, cross sections, etc.). The current model
utilized the original bathymetry file and then refined the grid. Upon
completion of this model update, CENWP completed a new survey of the
reservoir. Due to time constraints and analysis of the data by CENWP,
ERDC decided to not update the model with the new bathymetry.

3.1.2 Model grid development

Lost Creek Lake was split into two branches, with Branch 1 extending from
the Rogue River just downstream from Prospect, OR, approximately 7
miles to the dam, and Branch 2 is a side channel that enters the mainstem
of the reservoir about 1.5 miles upstream from the dam. The reservoir was
modeled with 58 longitudinal segments, varying in length from 200.0 to
350.0 m, and 104 vertical layers of uniform 1 m (3.28 ft) height.

Table 1 provides a description of the branches in the reservoir; the
segment numbers do not include the inactive (or “null”) segments that
start and end each branch (required in W2). Figure 3 shows an image of
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the longitudinal segments used in the model along with the branch
configuration, and Figure 4 is a Google Earth image with the model grid

overlay.
Table 1. Geometry characteristics.
Description Branch | Segment Start | Segment End | # Segments | Slope
Mainstem - Prospect to Dam 1 2 47 46 0.000
Branch 2 - Ungauged leg of the 2 50 57 8 0.000

lake

Figure 3. Longitudinal segments with branch configuration for the LCLM.

Figure 4. Google Earth image with model grid overlay

(produced by W2Tools) for the LCLM.
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The bathymetry of the LCLM that has been developed has been verified to
replicate the observed storage-elevation curve (obtained from CENWP).
Figure 5 shows the storage-elevation curve represented by the model
compared to the observed storage-elevation curve (or volume-elevation
curve). This provides ERDC with confidence that the bathymetry is good
and sufficient for the LCLM. A complete copy of the bathymetry file is in
Appendix A. All model input files were delivered to CENWP.

As stated previously, another in-lake profile station was available for
CYo1; however, due to the fact that the bathymetry did not extend the full
length of the true reservoir, this station (LSCR2) was not considered for
model evaluation purposes. In order to best represent the full reach of the
reservoir and incorporate the bottom elevation changes, the model would
need to be set up with two waterbodies: one river and one reservoir.
Setting the current model up this way is outside the scope of this project
due to the complexity of developing a riverine-reservoir model.

Figure 5. Volume-elevation curve comparison for the LCLM.

Volume-Elevation Curve Comparison

MODELED ===+ OBSERVED

1890 =

=
1840 /
§ /

1740 /

1690 /

1640 /

1590

Elevation, ft

1540

0 100000 200000 300000 400000 500000 600000 700000

Volume, ac-ft

3.13 Dam features and withdrawal locations

Table 2 presents an abbreviated list of segment numbers in the LCLM
bathymetry with a brief description of what site is located at the segment.
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For example, the in-lake monitoring site, LSCR11, is represented by
segment 47, which is the dam, in the LCLM bathymetry.

Table 2. Model segments of important locations.

Distance Distance

Upstream Upstream from
Segment | Length (m) from Dam(m) | Dam (miles) Identification/Location
1 0.000 0.000 0.000 Boundary (Null Segment)
2 300.000 11150.000 6.928 Beginning of Branch 1
18 250.000 6900.000 4.287 In-lake Station: LSCR3
34 250.000 2900.000 1.802 In-lake Station: LSCR9
36 250.000 2400.000 1.491 Branch 2 Enters Here

Dam/In-lake Station:
47 200.000 0.000 0.000 LSCR11
48 0.000 0.000 0.000 Boundary (Null Segment
49 0.000 0.000 0.000 Boundary (Null Segment
50 300.000 2550.000 1.584 Beginning of Branch 2
57 300.000 300.000 0.186 End of Branch 2
58 0.000 0.000 0.000 Boundary (Null Segment
3.2 Flow and elevations

3.2.1 Model inflow boundaries
3.2.1.1 Upstream and downstream boundaries

Mean daily flow for the Rogue River below Prospect, OR (14330000) was
available from the United States Geological Survey (USGS) for all years for
both calibration and validation of the model. Flow from this site was used
as the upstream boundary condition. However, the measured flow did not
include flow from the South Fork Rogue River, the confluence of which is
between the head of the reservoir and the Rogue River gage. All branches
in W2 require input files for flow and temperature. However, since the
second branch in this case does not have a major inflow, a dummy file of
zero flows was used as input for the model. This branch was modeled to
capture the geometry of the reservoir and to maintain the volume-
elevation relationship. In essence, this will have no impact on the model.
The model will fill solely using the upstream inflow. At the downstream
boundary, located at the dam, total outflows were available for all calendar
years from the Northwestern Division Corps Water Management System
(CWMYS) database. The elevation data available at the dam were used
solely for model-to-data comparison.
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The flow from the monitored station above (Rogue River below Prospect,
OR) does not account for all flows into the reservoir. The South Fork Rogue
River also accounts for a large amount of flow; however, recent data is
limited for this river. There are two stations available on the South Fork
Rogue River, but the active station is approximately 10 miles upstream from
the confluence with the Rogue River. Due to the inaccuracy associated with
flow estimation, a decision was made to account for any water balance
issues by using the water balance utility (available with the W2 download).

Table 3 displays the data sources for flow and elevation for various
locations: the upstream boundary (PRSO), the downstream boundary
(William Jess Dam), and three in-lake locations in the lake. Figure 6-
Figure 8 are plots of all flow data used as input for the model at the
upstream and downstream boundary for all three calendar years.

Table 3. Data sources for flow and elevation at the model boundaries.

River/Location Name Mile | Location and ID Source | Variable Calendar Year

Rogue River below Prospect 169.4 | PRSO; USGS #14330000 USGS Flow, Mean Daily 2001, 2003, 2010
William L. Jess Dam 157.2 | LOS; USGS #14335040 CENWP | Elevation, Mean Daily 2001, 2003, 2010
William L. Jess Dam 157.2 | LOS; USGS #14335040 CENWP | Flow, Mean Daily 2001, 2003, 2010

Figure 6. Flow input data for upstream and downstream boundaries for CYO1.
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Figure 7. Flow input data for upstream and downstream boundaries for CYO3.
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Figure 8. Flow input data for upstream and downstream boundaries for CY10.
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3.2.1.2 Tributaries

No gauged streams discharge into Lost Creek Lake. For this reason, no
tributaries were defined in the model. However, when ERDC obtained the
original model files from CENWP, only one inflow was specified: USGS flow
at Prospect, OR (USGS 14330000). There appeared to be a correction
applied to that version of the model as well as in subsequent simulations.
The assumption is that the correction is accounting for the additional inflow
from the South Fork Rogue River (see Figure 9). The model from CENWP
was initially calibrated and run for 1990, 1991, and 1999. In more recent
years, however, the flow at the closest gauged station (USGS 14334700) to
the reservoir is inactive (monitoring ceased in 1992); the next closest active
station on the South Fork Rogue River is approximately 10 miles upstream.
The flow here (USGS 14332000) underestimates the actual total flows into
the lake (see Figure 10); for this reason alone, ERDC decided that instead of
making two corrections (adding flows at Prospect and having a distributed
tributary) to account for the flow, the model would be better simply by
having one correction factor to the flows: the distributed tributary.

Due to the variation observed water surface elevations in early 2003, the
model for 2003 had to be run two times in order for the model to best fit
the observed water surface elevations. Again, the distributed tributary is
used typically when there are ungauged flows entering the system. In this
case, the flows are mostly from the South Fork McKenzie River. Figure 11
is the total flow that was added to the system to account for the water
balance problems.

Figure 9. USGS Map of all surface-water sites near upstream boundary.

Prospact
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Figure 10. Historical flows (through 1992) for the upstream stations.
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Figure 11. Distributed tributary inflow input data.
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3.2.2 Model outflow boundaries

The amount of flow withdrawn through each intake port is not measured;
however, gate settings are recorded. Gate settings information was
obtained from CENWP as an Excel spreadsheet. These values were then
used to develop the necessary file for W2 (QWO file).

Figure 12-Figure 14 is a plot of the outflow specified at each intake
structure. ERDC applied conditions to the total outflow based on
elevations and operations procedures as detailed in the Master Water
Control Manual (USACE 1991) to apportion the total outflow to each
intake port.

Figure 12. Outflow input data at specified structure for CYO1.
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Figure 13. Outflow input data at specified structure for CYO3.
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Figure 14. Outflow input data at specified structure for CY10.
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3.3 Temperature

3.3.1

Model boundaries

For all calendar years, temperature at the upstream boundary was defined
with mean daily temperature from the Rogue River at Prospect (USGS
14330000). Temperature at the upstream boundary was also used as input
for the second branch. However, since flows for the second branch are

input as zero, the temperature will have no impact on the model.

Temperature data at the dam were used as calibration data for the model.
Table 4 presents the locations and sources for temperature data, and
Figure 15 provides a time-series plot of temperature at the upstream
boundary as defined in the model for all calendar years.

Table 4. Data sources for temperature at the model boundaries.

River/Location Name Mile | Location and ID Source | Variable Calendar Year
Rogue River below Prospect 169.4 | PRSO; USGS #14330000 USGS Temperature, Mean Daily 2001, 2003, 2010
(Upstream Boundary)

William L. Jess Dam 157.2 | LOS; USGS #14335040 CENWP | Temperature, Mean Daily 2001, 2003, 2010
(Downstream Boundary)

Figure 15. Temperature input data for the upstream boundary for 2001, 2003, and

2010.
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3.4

3.3.2 Tributaries

Since tributaries were not monitored, there are none being modeled.
However, because a distributed tributary must be used to improve the
water balance, the upstream temperature input file was duplicated and
used as input temperature for the distributed tributary. There was no
temperature data available at any other gages (South Fork McKenzie) for
the time period modeled; for that reason alone, the upstream boundary
temperature was used as input for the distributed tributary.

Meteorological data

Hourly meteorological data were requested from the 14th Weather
Squadron (14WS) at Medford, OR (28 miles southwest of Lost Creek
Lake). Figure 16-Figure 21 provide a mean daily time-series plots for
various meteorological conditions at the upstream boundary as defined in
the model for CYo1.

Figure 16. Air and dewpoint temperature input data for 2001.
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Figure 17. Air and dewpoint temperature input data for 2003.
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Figure 18. Air and dewpoint temperature input data for 2010.
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Figure 19. Cloud cover input data for 2001.
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Figure 20. Cloud cover input data for 2003.
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3.5

Figure 21. Cloud cover input data for 2010.
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CE-QUAL-W2 control file

The control file for the model calibration (CY01) can be found in Appendix
B along with a table detailing any differences for all other model
simulations. In order to keep this section concise, only parameters related
to temperature are discussed.

3.5.1 Calculations, transport scheme, and heat exchange

Since evaporation is always considered in the surface heat exchange
calculations in W2, it is important to turn the evaporation calculation
(EVC) on if needed. According to the manual, if calculated inflows are used
in setting up a model, then EVC is set to OFF; however, in the case of the
LCLM, EVC is set to ON since we are using direct USGS inflows and
evaporation is not included in USGS flows.

The transport solution scheme used in the LCLM is the ULTIMATE
scheme, which is a higher order solution scheme that reduces numerical
diffusion and eliminates the over- and undershoots that the QUICKEST
scheme generates near regions of shear concentration gradients (Cole and
Wells 2013).
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In the W2 control file, the user must specify heat exchange parameters.
The first parameter specified is the approach used for computing surface
heat exchange (SLHTC). For the LCLM, ERDC chose to use a term-by-
term (TERM) heat exchange because it is more theoretically sound
according to Cole and Wells (2013) and because it produced better model
results than the equilibrium temperature method (ET). Shortwave solar
radiation was available, but ERDC chose to the let the model calculate it
internally because this produced better results (SROC = OFF). Although
ERDC was provided with hourly meteorological data, W2 was still allowed
to interpolate the input data to correspond to the model time-step by
setting the METIC parameter to ON. The wind speed measurement height
was set to 10 m in the LCLM as indicated by the 14WS. All other heat
exchange parameters were set to the suggested manual values.

3.5.2 Extinction coefficients

The extinction coefficient card contains two important coefficients for
temperature calibration. The extinction coefficient for pure water
(EXH20) is set to 0.55 m™!, which is greater than the default value for a
temperature-only model (0.45 m). However, the value is within the range
of values for EXH20 for oligotrophic to eutrophic lakes, 0.2-1.66 m; the
higher value accounts for the turbidity of the lake. The BETA parameter
determines the fraction of incident solar radiation absorbed at the water
surface and is also set to the value of 0.55 in the LCLM model. The W2
manual suggests that typical values for BETA are approximately 0.2-0.7
(Cole and Wells 2013).

3.5.3 Selective withdrawal

W2 is capable of modeling a temperature control tower with selective
withdrawal features. The latest version also has the added capability of
dynamic port selection; however, since this was not used for the current
model, it will not be discussed here.

The Lost Creek Lake Water Temperature Control tower (WTC) has five
intake structures into a common wet well: four water temperature control
ports and one turbidity conduit. The turbidity conduit is used throughout
the year to act as a water temperature control port or to flush the lower
levels of the reservoir. The conduit is connected to the middle of the lowest
fixed port at elevation 1,640 ft and is often responsible for 81% of the flow
entering the tower through that lowest port (USACE 1991). Figure 22 is an
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image of where each intake port is identified in the model control file. Two
additional intakes are located on the WTC but neither use the tower wet
well: a tower bypass intake and fish hatchery warm water supply intake.
These two intakes are not explicitly represented in the model because their
flow rates are negligible.



Figure 22. Schematic representation of the water temperature control port elevations. (This includes minimum head

requirements).
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4 Model Calibration - CYO1

Final calibration results are presented in this section. In all of the time
series plots shown, a black solid line represents model output, a solid red
circle or solid or dashed red line represents measured data. Three statistics
are also presented in the charts: mean error (ME), absolute mean error
(AME), and root mean square error (RMSE). These statistics are
calculated as shown in Equations 1-3. The model was output every day as
a daily average; when making time series comparisons to the observed
data, a tolerance of 0.5 days was used for the model output so that model
output and measured data were compared spatially and temporally with
minimal averaging. A tolerance of seven days was used for the model
output when making profile plot comparisons. In both of the cases, the
statistical comparison is a one-to-one comparison. We use the closest date
and the closest depth for comparing values. The tolerances used also
allowed enough spacing to avoid observed data averaging.

n

> (model —data)

ME =2 (1)
n

iabs( model —data)

AME =2 (2)
n

zn:( model —data)?

RMSE =1/ (3)
n

Cumulative distribution plots are also presented in this section. For these
plots, the solid black line represents model output and the dashed red line
represents observed data. These plots are used to indicate how the model
is behaving overall when compared to the observed values. For example, at
high temperatures, the model over-/underpredicts temperature by XX
deg-C, where XX represents the AME value. Scatter plots are also
presented to give a statistical representation of how the model is behaving.
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A general rule of thumb for water quality calibration is that the absolute
mean error should be within 10% of the range of monitored data,
temperature AME should be within 1 deg-C (~1.8 deg-F), and elevations
should be within 0.5 m (1.64 ft). Equation 4 is the equation used to
calculate the target values for AME. These target values were calculated for
each calendar year and will be presented in tabular form in the following
sections. Units for these targets are consistent with the minimum and
maximum values for each constituent. For example, for flow, the
minimum, maximum, the AME, and 10% target are presented in cubic feet
per second.

Target = 0.10*((maximum observed value) - (minimum observed value)) (4)

4.1

Flow

Since the model upstream boundary condition segment often changes
based on the reservoir volume, ERDC cannot produce flow plots to verify
that the upstream boundary condition for flow is satisfied. Model output
along with observed data for CYo1 at the dam is shown in Figure 23. Note
that this is really just a representation that the data is being read correctly
from the input outflow file. The AME for all data pairs for 2001 at the dam
is 0.10 cfs, which is well less than 0.5% of the measured range of flows the
calendar year. Table 5 presents several basic stats for flow. Based on
Figure 23, the slope of the trendline fitted through the data pairs is 1.00
and the R-squared value is 1.00. Overall, the model only underpredicts
outflow at the dam by 0.05 cfs.

Table 5. Basic statistics for flow (cfs) for CYO1 calibration.

SITE Ol.)s.erved Obsgrved AME | ME | Slope | R-Squared
Minimum | Maximum

Dam | 690.00 | 3210.00 | 0.10 | -0.05 | 1.00 1.00

1 Wells, Scott. 2008. Personal communication with Tammy Threadgill. June 15. CE-QUAL-W2 Workshop,
Portland, OR.
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4.2

Figure 23. Withdrawal flow at the dam for CYO1 calibration.
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Temperature

The best hope in correctly predicting the outflow temperature is to
correctly predict the in-lake temperature profiles at various locations in
the reservoir. If the temperature profiles are not satisfactory, the chance of
correctly predicting total outflow temperature is highly unlikely. Profile
plots and statistical plots for all in-lake monitoring sites are presented in
Figure 24-Figure 29. (Figure 2 shows the location of each of these sites.) A
time series plot and statistical plots are presented for the dam in Figure
30. The average AME for each of the in-lake sites are within the acceptable
target. Table 6 presents the calculated AME and the temperature target
that ERDC attempted to reach for the in-lake sites and for the outflow
temperature at the dam. Based on Figure 27-Figure 29, the average slope
of the trendlines is 1.12, and the R-squared value is 0.91 for the in-lake
sites. Based on the figures below, the model underpredicts the
temperature by an average of 0.56 deg-C at the downstream in-lake sites
and overpredicts temperature by approximately 0.50 deg-C at the furthest
upstream in-lake site (LSCR3). At the dam, the AME is 0.56 deg-C, with a
slope of 1.08 and an R-squared value of 0.98 (see Figure 30).
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Table 6. Basic statistics for temperature (deg-C) for CYO1 calibration.

Observed | Observed | Target
SITE .. . AME | ME | Slope | R-Squared
Minimum | Maximum | AME P a
LSCR11 (CY 5.06 20.61 1.00 | 0.68 | -0.17 | 1.08 0.96
AVG)
LSCR9 (CY AVG) 5.03 21.15 1.00 | 090 | -0.22 | 1.13 0.94
LSCR3 (CY AVG) 8.65 16.60 1.00 | 0.89 | 0.82 | 1.04 0.94
Dam (Outflow) 4.50 14.78 1.00 | 052 | -012 | 113 0.98
Figure 24. Temperature profiles at LSCR11 in CYO1 calibration.
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Figure 25. Temperature profiles at LSCR9 in CYO1 calibration.
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Figure 26. Temperature profiles at LSCR3 in CYO1 calibration.
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Figure 27. Flow linear and cumulative distribution plots at LSCR11 for CYO1

calibration.
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Figure 28. Flow linear and cumulative distribution plots
at LSCR9 for CYO1 calibration.
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Figure 29. Flow linear and cumulative distribution

plots at LSCR3 for CYO1 calibration.
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Figure 30. Withdrawal temperature at the dam for CYO1 calibration.
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4.3

Water surface elevation

Model output along with observed data for water surface elevations
(ELWS) in CYo1 at the dam is shown in Figure 31. The AME for all data
pairs for 2001 at the dam is 0.33 ft (~0.08 m). Table 7 presents the
calculated AME and the 1.64 ft (0.5 m) target that ERDC attempted to
reach. The slope of the trendline fitted through the data pairs is 1.01 and
the R-squared value is 1.0. Overall, the model only underpredicts ELWS at
the dam by 0.33 ft.

Table 7. Basic statistics for water surface elevations (ft) for CYO1 calibration.

Observed | Observed | Target
SITE Minimum | Maximum | AME AME | ME | Slope | R-Squared
Dam | 1775.63 | 1856.29 | 1.64 | 0.33 | -0.33 | 1.01 1.00

Figure 31. Water surface elevations at the dam for CYO1 calibration.
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Calibration Discussion

Model calibration results and all model assumptions are discussed in this
section. As stated previously, not only does this report detail graphical
comparison, but the authors also present several statistical comparisons:
AME, RMSE, and ME. Both the flow results and the temperature results
will be discussed below. An inventory of files needed for the calibration
runs can be found in Appendix B (Table B2).

Water surface elevation

As stated previously, due to the water balance instabilities in the model, a
distributed tributary was added to the calibration run. This drastically
improved the initial results. Figure 32 shows the impact of not using
distributed tributary. Notice how the model severely underestimates the
water surface elevation for ten months out of the year. By the end of the
year, the model has almost 100 ft of elevation worth of unaccounted for
water. Once the distributed tributary was added, and before any other
parameters were modified, the improvement to the results was astounding
(see Figure 33).
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Figure 32. Time series and statistical plots of ELWS without the distributed tributary.
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5.2

Figure 33. Time series and statistical plots of ELWS with the distributed tributary.
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Temperature

Initially, before the water balance issues were corrected, the model was
drastically miscalculating the temperature. However, once the distributed
tributary was added, the model was still overpredicting the temperature
(CYo1-Runo2). Upon observing the in-lake profile plots, the surface
temperature was too warm. ERDC performed three more simulations with
the following changes:

1.

Set SROC = OFF in the control file. Due to the fact that the
meteorological station is not located at the dam, ERDC has found in
previous studies that the model performs better when the W2 is
allowed to calculate SRO (short wave solar radiation) internally.
Making this change had the most significant effect on the surface
temperature. (CY01-Runo3 — not plotted below)
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2. Changed EXH20 from 0.45 to 0.55 in order to increase the amount
of heat retained at the surface instead of letting the heat descend
into the water column. After setting SROC = OFF above, although
the surface water cooled down significantly, the water was still too
warm from 10-50 feet below the surface. Next, the team changed
BETA from 0.45 to 0.55. BETA is similar to EXH20 in that it also
helps to retain more heat surface. These changes (independent of
each other) had a very small positive impact on model temperature
predictions. (CYo1-Runos shows these modifications together even
though they were run in consecutive runs.)

3. During calibration, the team realized that the outflow for day 267
(September 24th) was incorrect. The values for this day were
replaced with the values from the previous day (note the spike in
CYo01-Runos). Sediment temperature was corrected to average air
temperature for the year. Originally, it was 11.5 deg-C. Although this
was a very close approximation, the value was corrected to 11.984.
(CYo1-Runo9)

4. The final attempt to improve the in-lake profile temperature
predictions was to modify the wind-sheltering coefficient during fall
and winter periods when there are no leaves on the trees. This made
a significant improvement to model predictions. (CY01-Run13)

Temperature comparisons at the in-lake stations and the dam between
each of the runs discussed above are seen in Figure 34-Figure 37. In all of
the plots below, the red dots are observed data. The time series
comparison is more indicative of the gains in temperature improvement
with the above modifications than are the profile comparisons.
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Figure 34. Profile comparison at LSCR3.
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Figure 35. Profile comparison at LSCRO.
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Figure 36. Profile comparison at LSCR11.
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Figure 37. Time series comparison at the dam for CYO1.
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6.1

Model Verification - CY03 and CY10

Model verification results are presented in this section. CYo3 and 2010
were used because they had the same types of monitored data and similar
available in-lake profile data. All of the plots and statistics presented in
this section were developed in an identical manner to those in the previous
section. Just as for the calibration runs, an inventory of data files can be
found in Appendix B (Table B2).

Flow

Model output along with observed data for CYo3 and 2010 at the dam is
shown in Figure 38 and Figure 39. Again, this is really just a
representation that the data is read correctly from the input outflow file.
The AME for all data pairs for 2005 at the dam is 0.08 cfs, which is well
less than 0.5% of the measured range of flows for the calendar year. Table
8 presents the 1% AME target that ERDC attempted to reach. The slope of
the trendline fitted through the data pairs is 1.00, and the R-squared value
is 1.0. Overall, the model only underpredicts outflow at the dam by less
than 0.01 cfs.

Table 8. 1% Target for flow (cfs) for CYO3 verification.

Observed | Observed | Target
Minimum | Maximum | AME

Dam -2003 | 800.00 | 5590.00 | 47.90 | 0.19 | -0.03 | 1.00 1.00
Dam-2010 | 710.00 | 5820.00 | 51.10 | 0.90 | 0.68 | 1.00 1.00

SITE AME | ME | Slope | R-Squared
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Figure 38. Withdrawal flow at the dam for CYO3 verification.
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6.2

Figure 39. Withdrawal flow at the dam for CY10 verification.
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Temperature

The data available for the verification years was a little different than in
CYo1. For CY03, only one sample data at one station was available (August
23 at LSCR11). For CY10, no true in-lake stations were monitored. In order
to provide feedback on in-lake temperatures, ERDC chose to use
temperatures from selected dates available from the temperature string
located at the dam (in place since 2006). It is important to note that the
temperature string data was only available through May. The 15t day of
Jan-May was chosen as representative for each month in CY10. The
segments used for data comparison can be found in Table 2.

Profile plots and statistical plots for all in-lake monitoring sites are
presented in Figure 40-Figure 43. Time series plots and statistical plots
are presented for the dam in Figure 44 (CY03) and Figure 45 (CY10).
Table 9 presents the calculated AME and the temperature target that
ERDC attempted to reach for the in-lake sites and for the outflow
temperature at the dam. The average AME for each of the in-lake sites are
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within the acceptable target of 1 deg-C. Based on Figure 41 and Figure 43,
the average slope of the trendlines is 0.75 and the R-squared value is 0.90
for the in-lake profile site LSCR11 (dam temperature string) for both years.
Overall, the model only underpredicts temperature at this site by

approximately 0.51 deg-C in CY03 and 0.39 deg-C in CY10. At the dam

(temperature string), the AME is 0.47 deg-C and 0.63 deg-C for CYo3 and
CY10, respectively (see Figure 44 and Figure 45). The model underpredicts
temperature by an average of approximately 0.15 deg-C at the dam.

Table 9. Temperature stats (deg-C) for verification years.

Observed | Observed | Target R-

SITE Minimum | Maximum AME AME | ME |SLOPE squared
LSCR11 (CYO3 - one day 5.25 23.93 1.00 0.33 |-0.25| 0.98 0.99
only)

Dam Temp. String (CY10 4.51 14.72 1.00 0.53 |-0.20| 0.51 0.80
AVG)

Dam (CY03) 4,72 13.50 1.00 0.48 | 0.06 | 1.12 0.97
Dam (CY10) 4.89 13.89 1.00 0.64 | 0.09 | 1.18 0.96

Figure 40. Temperature profile at LSCR11 in CYO3 verification.
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Figure 42. Temperature profiles at the dam temperature string in CY10 verification.

Figure 41. Flow linear and cumulative distribution plots at LSCR11 for CYO3
verification.
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Figure 43. Flow linear and cumulative distribution plots at the dam temperature
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Figure 44. Withdrawal temperature at the dam for CYO3 verification.
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6.3

Figure 45. Withdrawal temperature at the dam for CY10 verification.
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Water surface elevation

Model output along with observed data for ELWS CYo03 at the dam is
shown in Figure 46 and in Figure 47 for CY10. Table 10 presents several
stats and lists the target AME for each verification year.

Table 10. Basic statistics water surface elevations (ft) for CYO3 verification.

Observed | Observed Target R-
SITE Minimum | Maximum AME AME ME | Slope Squared
Dam 1808.78 1872.01 1.64 0.61 -0.48 | 0.99 1.00
(CY03)
Dam 1807.43 1872.60 1.64 0.43 -043 | 1.01 1.00
(CY10)




ERDC/EL TR-17-4

43

Figure 46. Water surface elevations at the dam for CY03 verification.
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Figure 47. Water surface elevations at the dam for CY10 verification.
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Verification Discussion

This section serves to discuss the results and the impacts that changes
have made on the model runs. Due to the similarity in available input data
for each of the verification years compared to the calibration year, no
changes were made to the control file. Just as for CY01, a distributed
tributary was needed for both calendar years. The water balance utility
used to calculate the distributed tributary flow had to be run two times for
CYo03 due to a sudden increase in the water surface elevations between
February and April (see Figure 46). A distributed tributary is utilized in
W2 when there is an inconsistent trend with the water balance and when
the user can account for missing or too much flow (i.e., ungauged flows). It
can be used to add or remove water from the system. In the case of the
LCLM, a distributed tributary was used to add water to the system.

To develop a distributed tributary input file, initial model output and
observed elevations must be input into the Water Balance Utility
developed by Portland State University for use with W2. In the case of the
LCLM for CY03, the utility had to be run two times on consecutive runs in
order to obtain an acceptable water balance. Additionally, in the event the
Water Balance Utility calculated negative flows, these flows were adjusted
so that only positive flows were introduced in the model. More
information on developing a distributed tributary file can be found in the
“Release Notes” that accompany the full W2 download along with the
Users’ Manual.
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8.1

Predictive Port Selection Model
Application

In order to provide CENWP with the best model to use for operation
modifications, the calibrated model was used as a base run to set up a fully
predictive model. The model will guide dam operations based on desired
temperature targets. The temperature target presented is the bi-weekly
target developed by Oregon Department of Fish and Wildlife for 2014
operations. The current version of W2 (v3.71 — 07/15/14) has an algorithm
in it to do just this; however, it is limited to only blending temperatures
with only two ports at a time. Oftentimes, even the calibration, as
previously reported, has three to four ports operating at a time. Upon
recommendation from CENWP, ERDC-EL reached out to Stewart Rounds
(USGS) to see whether he would be willing to share his version of a less
restrictive blending algorithm that is fully integrated with a previous
version of W2 (v3.7 from 2012). Mr. Rounds provided ERDC-EL with his
code and executables; the results from the USGS version of W2 will be
presented in this section. Briefly, the PSU version of W2 results will be
discussed as well. An inventory of all files used for each model simulation
can be found in Appendix B (Table B3).

PSU - W2 predictive port selection

PSU’s current version of W2 has not fully integrated the algorithm
developed by Mr. Rounds at USGS. According to personal correspondence
with Dr. Scott Wells (2014), however, it is definitely on the list of model
improvements for a future release. W2 is limited to blending temperatures
between only two ports. In order to optimize the temperature release, the
user must run the model multiple times with minor adjustments (date and
temperature adjustments in the w2_selective.npt file). Below are the steps
required to run the PSU-Predictive model:

1. Begin with base calibration run for desired year.

2. Place all outflows in topmost port.

3. Run the model with the automatic selection of outlet port control
(DYNSTR1 CONTROL) turned ON. This will result in a qwo file that
contains information regarding elevation of the withdrawal to get the
closest desired temperature.
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8.2

4. Based on the results from (3) above, create a new QOT input file. Ex: If
in the QWO file from (3), flow was specified at the 4th intake port for
days 300-365, then in the new QOT file for days 300-365, move the
original flow into the column for intake 4.

5. Now turn OFF the DYNSTR1 CONTROL card turned on in (3). Turn
ON the SPLIT1 CNTR card. Based on the results from (3), take a best
guess on when blending should occur between which ports and update
the SPLIT2 cards. Use the desired temperature targets in the
TTARGET column.

6. Rerun and plot results. Based on results, modify the SPLIT2 cards as
needed and rerun. Repeat this step as necessary.

As one can see, this method is quite cumbersome for the end user. At any
point, the user wants to blend between more than 2 ports, more steps have
to be repeated. It is a long and tedious task.

Model simulations were run for all years using the PSU version of the
code; the results will be presented with the USGS results in the next
section.

USGS - W2 predictive port selection

Detailed information on the development and modifications to the original
W2 code can be found in “Improved Algorithms in the CE-QUAL-W2
Water-Quality Model for Blending Dam Releases to Meet Downstream
Water-Temperature Targets” (Rounds and Buccola 2015) . Specifics
relating to setup of the Lost Creek Lake Predictive Model (LCLPM) will be
discussed here. The USGS code uses an iterative process to determine the
optimal flows that will produce the desired target temperatures. Of course,
this means that the run time will also increase. In the case of the LCLPM,
using this code tripled the run time (from about 3-5 minutes to 10-12
minutes).

There were no changes to the main control file from the calibration model
(aside from output filename changes). All changes that were made were
made in the w2_selective.npt file, which is required when the SELECTC
card in the control file is turned ON. Although the structure of the
w2_selective.npt file is very similar to the PSU version, there are several
new options. The new cards are:
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1. TSSHARE: when blending occurs between two ports, having this
option ON allows the flows to be best distributed based on desired
temperature instead of an even 50-50 split between multiple outlets.
(NOTE: For the LCLPM, this was set to ON.)

2. DEPTH: when a non-zero value is input, this allows the model to treat
the outlet as a floating outlet. (NOTE: For the LCLPM, DEPTH was set
to 0 since Lost Creek Dam consists of fixed ports.)

3. MINFRAC: this specifies the minimum flow rate (when a negative
value is entered) or fraction (when a value 0-1 is entered) for a port
when that port is active. (NOTE: For the LCLPM, according to the
WCM ((USACE 1990), 19% of the flow from the lowest intake is
associated with flows at that level. The rest of the flow is assumed to
come from the turbidity conduit.)

4. PRIORITY: this specifies the priority for port operations. (NOTE:
During various times of the year, CENWP operates to use more surface
water sometimes and at other times, the cold lower waters are used. So
for the fall and winter months, the priority was shifted to the bottom
two ports. Outside of that the priority was to use the topmost port.)

5. MINHEAD: This is the minimum depth in meters for the outlet to be
used. (NOTE: Technically, this should be set to 5 m, but since the
centerline in the calibration run accounts for the intake roof and
minimum head, the ERCD-EL chose not to modify the ESTR card in
the W2_ control.npt file. With that said, the LCLPM MINHEAD
conditions are all set to 0.)

6. MAXHEAD: This is the maximum depth in meters for the outlet to be
used. (NOTE: LCLPM MAXHEAD values are set to 0, as well.)

7. MAXFLOW: This is the maximum flow capacity of the port. A zero
value indicates no maximum flow criterion. (NOTE: LCLPM values are
all set to 0.)

As mentioned above, the minimum head values are accounted for in the
specification of the ESTR in the main control file. Since this file was not
modified, a MINHEAD was not specified. In the LCLPM w2_ selecitve.npt
file, the user will find that three split times were identified. The reason
these dates were identified is due to operational constraints with seasonal
withdrawal depths. Specifying it this way allowed ERDC-EL to set the
PRIORITY based on which ports were desired.

The only other caveat that should be mentioned here is that, although only
19% of the flow from the lowest intake is taken at the level, there was no
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easy way to have the model ONLY use 19% of the flow from here. As the
model is set up now with TSSHARE ON and with Intake 4 and the
turbidity conduit having the same priority, when flows are taken from
either of those ports, a MINIMUM of 19% of the flow will be taken from
the total flow. The remaining flow will be split between the two to optimize
temperature targets; this results in the fact that more than 19% of the flow
is actually taken at the elevation of Intake 4 instead of a hard 19-81% split
between the intake and the turbidity conduit.

The user should note that in all of the following plots, the red lines
represent a temperature target range. The ODFW targets are used for
determining the target values; however, what is represented on the
following plots is a target range, which is the ODFW temperature target
+/- 1 deg-C, which is a standard measuring error for temperature.

Figure 48 is the w2_ selective file used for all of the LCLPM model runs.
Figure 49-Figure 59 are plots from CYo1 (dry year) that compare the
results from the calibration, the results from the PSU-W2 blending
algorithm, and the results from the USGS-W2 blending algorithm. Figure
60-Figure 70 represent the same plots for CY03 (normal year), and Figure
71-Figure 81 represent CY10 (wet year). As one can see, the outflow
temperatures are fairly consistent between the two blending algorithms;
however, the flows and the releases are drastically different at times.
Figure 82 shows the average percentage of model-predicted temperatures
that fall within the desired target range. As one can see, the USGS
algorithm produces better results more often than the calibration run and
more often than the multi-step PSU version. To save the user multiple
runs for the predictive mode model, ERDC-EL suggests that the USGS
algorithm be used.
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Figure 48. W2_Selective.NPT file used for the LCLPM.

o
o

5 JST/NWT JSB/NWB JS9/NW9 JSO/NWO

t
[SREET)

DEFTHE DEPTHS

PRIORE PRIOR7 PRICR8 PRICRS PRIORILD

MINHDE

MAZHDE

5 MAXFLOG MAXFLO7 MAXFLOS MAXFLOS

(**NOTE: ELEV6-10 are cut off for better image clarity. These values are blank since
there are only 5 ports.)
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Figure 49. CYO1 - LCLPM temperature comparison with target temperatures.
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Figure 50. CYO1 - Intake 1 - temperature into tower.
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Figure 51. CYO1 - Intake 2 - temperature into tower.
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Figure 52. CYO1 - Intake 3 - temperature into tower.
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Figure 53. CYO1 - Intake 4 - temperature into tower.
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Figure 54. CYO1 - Turbidity conduit - temperature into tower.
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Figure 55. CYO1 - Intake 1 - flow into tower.
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Figure 56. CYO1 - Intake 2 - flow into tower.
2001 = Nlake?,
Total Qutflow
3500 T T T T T T T T T T T
- o
3000 . " -
DL
2 2500 oo g
- - "
o .o *n
£ 20001 oot e ® W2-BaseRun —
’; . . PSU-PredictiveRun
S 1500 ! | Py ® USGS-PredictiveRun
= . -‘.ﬁ - -
= .. oo Yl -
- oo R e |
————— '-
500 o : -
. o "
-
0 I 1 I 1 1 I I 1 I I 1
01-01 02-01 03-01 04-01 05-01 06-01 07-01 08-01 09-01 10-01 11-01 12-01 01-01
Dzite, MM-DD
Figure 57. CYO1 - Intake 3 - flow into tower.
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Figure 58. CYO1 - Intake 4 - flow into tower.
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Figure 59. CYO1 - Turbidity conduit - flow into tower.
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Figure 60. CYO3 - LCLPM temperature comparison with target temperatures.
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Figure 61. CYO3 - Intake 1 - temperature into tower.
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Figure 62. CYO3 - Intake 2 - temperature into tower.
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Figure 63. CYO3 - Intake 3 - temperature into tower.
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Figure 64. CYO3 - Intake 4 - temperature into tower.

2003 - INtaked;
Temperature into Tower
T T I I T T I T T | T
25~ ® W2-BaseRun n
e ® PSU-PredictiveRun
TR ® USGS-PredictiveRu |
£
=
£ 15+ —
£
=
=
T 10 .
@
Q
5 M
@
= 5 W =
V] | | | 1 1 | | 1 | 1 1
01-01 02-01  03-01 04-01 05-01 06-01 07-01 08-01 09-01 10-01 11-01 12-01 01-0%
Date, MM-DD
Figure 65. CYO3 - Turbidity conduit - temperature into tower.
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Figure 66. CYO3 - Intake 1 - flow into tower.
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Figure 67. CYO3 - Intake 2 - flow into tower.
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Figure 68. CYO3 - Intake 3 - flow into tower.
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Figure 69. CYO3 - Intake 4 - flow into tower.
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Figure 70. CYO3 - Turbidity conduit - flow into tower.
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Figure 71. CY10 - LCLPM temperature comparison with target temperatures.
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Figure 72. CY10 - Intake 1 - temperature into tower.
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Figure 73. CY10 - Intake 2 - temperature into tower.
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Figure 74. CY10 - Intake 3 - temperature into tower.
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Figure 75. CY10 - Intake 4 - temperature into tower.
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Figure 76. CY10 - Turbidity conduit - temperature into tower.
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Figure 77. CY10 - Intake 1 - flow into tower.
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Figure 78. CY10 - Intake 2 - flow into tower.
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Figure 79. CY10 - Intake 3 - flow into tower.
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Figure 80. CY10 - Intake 4 - flow into tower.
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Figure 81. CY10 - Turbidity conduit - flow into tower.
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Figure 82. Average % of model temperature within the target range.
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Summary and Conclusions

The USACE-ERDC-EL assisted CENWP in updating a W2 model of Lost
Creek Lake based on inputs from an existing model of the reservoir. The
model was calibrated using data from calendar year (CY) 2001 (dry), 2003
(normal), and 2010 (wet). Across all calendar years, the model captured
the quantitative and qualitative trends for temperature and flow.
Quantitatively, the model predicted temperatures within 1.0 deg-C for
most of the calibration sites (in-lake sites and at the dam), which is far
better than many other temperature studies (Arhonditsis and Brett 2004).
Qualitatively, trends were consistent with measured data. Model
performance statistics were paired temporally and spatially closely with
the measured data.

In addition to a fully updated calibrated model, ERDC-EL also developed
an application of the model using modified W2 code from the USGS that
allows for a better functioning blending algorithm between multiple ports.
Using this algorithm has multiple advantages over the current version of
Wa:

1. One run produces the results needed to obtain the target temperature.
With a few minutes spent in updating the w2_selective file, the user
can generate the results with far few runs.

2. Multiple outlets can be blended to reach desired temperature. The

current version of W2 (PSU) limits the user to at most two ports being
blended.

The major downfall of the USGS code is that the base W2 code is not the
latest version of the code. The base for the USGS code was the first release
of W2v3.7. According to personal correspondence with Dr. Scott Wells
(PSU) and Mr. Stewart Rounds, the PSU version of W2 will be updated in
a future release to include all of the USGS updates. A secondary downfall
of this code is that due to its iterative nature, the run time is also increased
(almost tripled in the case of LCLPM).

This model and the corresponding results from the study provide CENWP
with a fully capable model in determining how operational changes will
impact downstream water temperature. This is extremely important



ERDC/EL TR-17-4

64

because the Rogue and Applegate temperature Total Maximum Daily
Loads (TMDL), Rogue Spring Chinook Conservation Plan, and possibly
the Rogue Fall Chinook Conservation Plan require the Corps to review the
operations to determine whether improvements to downstream
temperature for the benefit of endangered fish can be achieved.

Additional work to consider would be the impacts of these temperatures
on fish with respect to egg emergence data. This model, coupled with an
in-depth fish analysis, would provide CENWP with invaluable information
regarding dam operations and the impacts to fish.
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Appendix A: Bathymetry File

This section contains an image of the bathymetry file used for the LCLM.
The only difference between calendar years was the initial water surface
elevation used in creating the bathymetry file. W2 V3.7 now has the
capability to use a csv file developed in Excel. The images below (Figure
A1-Figure A8) are pages from the Excel file used to the develop the csv file;
to read them correctly, it is important to know that page two contains the
widths for the remaining depths of the reservoir for the first thirteen
segments; page four gives the same information for segments 14-28, and
so on. Table A1 is the initial water surface (ELWS) used in the
development of the bathymetry files for each of the model simulations.

Table A1l. Initial ELWS used in bathymetry files for all simulations.

Calendar Year ELWS (m) ELWS (ft)
Calibration-2001 552.13 1811.46
Verification-2003 552.37 1812.22
Verification-2010 552.49 1812.64




Figure Al. Page 1 from bathymetry development Excel file.
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Figure A2. Page 2 from bathymetry development Excel file.
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Figure A3. Page 3 from bathymetry development Excel file.
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Figure A4. Page 4 from bathymetry development Excel file.
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Figure A5.

Page 5 from bathymetry development Excel file.
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Figure AG.

Page 6 from bathymetry development Excel file.
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Figure A 7.

Page 7 from bathymetry development Excel file.
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Appendix B: W2 Control File with Detailed
Modifications

This appendix serves to present the control file (w2_con.npt) used for the
calibration of the model (see Figure B1-Figure B11) along with a table of
changes for every model run simulated (see Table B1). All other model
simulations will be compared to the Calibration w2_selective.npt file.
Discussions of all modifications are made in the main report text.
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Figure B1. Page 1 from CYO1 w2_con.npt file.

I

38

0

1.

{Jday: 1L

NITUWL
OFF

DLTD

DLTMAX

DLTF

DQE

JBOMN

ERC
OFF

AFW
. 20000

GICE
. 07000

TSEDF
[els7e1u]e}

ARODI

STRIC

ETSTR

KEBSTR

to 365)

MET »PU
Q 0
NZP

DLTD DLTD DLTD

DLTMAX DLTHMAX DLTMAX

DLTF DLTF DLTF

NLMIN SLOPE SLOPEC
1 0.00000 0.000400
1 0.00000 0.00000

BFw CFW WINDH
0.45000 2.00000 10.C000

ICEMIIT ICETZ2
0.45000 3.00000

FRICC Z0
MANN 000100

STRCKLR BOUNDFR TKECAL

STRIC 3STRIC STRIC

¥TSTR KTSTR KTSTR

KBSTR KESTR KBSTR

W2 Model Version 3.7
TITLE C e e it e e e s TITLE
Version 3.7 Lost Creek Reservior 2001
Model Run from 01/01/2001 to 12/30/2001
CYOL1-RUN13 - CYOLl-RUN1Z
- Adjust timing on WS increase in WSC file.
- Based on Runl2 Results.
Tammy Threadgill - USAJE ERDC EL
GRID HWE MER IME KMX NPROC
2 58 104 1
IN/OUTFL HNTR N5T MIW utind NGT
] 5 Q Q ]
CONSTITUO NG NS& NAL NEP WNEOD
o [} o Q o
MISCELL NDAY SELECTC HABTATC ENVIRPC AERATEC
ion CFF CFF OFF OFF
TIME CCMN TMSTRT TMENL YEAR
1.00C0 365.000 2001
DLT CON NDT DLTMIN DLTINTR
1 0.10000 CFF
DLT DATE DLTD DLTD DLTD CLTD DLTD
1.00000
DLT MAX DLTMAX DLTMAX DLTMAX DLTMARX DLTMAX
3600.00
DLT FRN DLTF DLTF DLTF DOLTF DLTF
J.%0
DLT LIMI VISC CELC
WE 1 oN oM
BRANCH G us DS UHS DHS UQE
ER1 2 a7 o] a 1}
ERZ2 =1 57 o} 26 o
LOCATION LAT LONG EBCT BS EE
WBE 1 2.69C0 122.4658 47Z.440 1 2
INIT CND T2T ICEI WTYPEC GRIDC
WB 1 S.444 D.000 FRESH RECT
CALCULAT VEC EBEC MBZ PeC EVC
WE 1 QOFF CQFF CFF CN oN
DEAD SEL WINDC QINC QauT HEATC
WB 1 oN oM CN G
INTERPOL QINIC DTRIC HDIC
BR1 OFF QFF CFF
BR2 QFF CFF CFF
HEAT EXCH SLHTC SRQC RHEVAF METIC FETCHC
WB 1 TERM OFF GFF O OFF
ICE COVE ICEC BSLICEC ALBEDC HWICE EBICE
WE 1 OFF DETAIL 0.25000 10.0000 0.60000
TRANSPCR SLTRT THETA
WE 1 ULTIMATE G.55
HYD COEF AX X CEHE TSED FI
WE 1 1.000C00 1.00C00 0.20000 11.%284 0.010C0
EDDY VI3C AZC AZSLC AZMAX FBC E
WEB 1 Wz IMP 1.0
W STRUC HNSTR
ER1 5
BERZ o
STR INT STRIC STRIC STRIC STRIC S8TRIC
BR 1 on oM oM QN on
BR 2
STR TOP KTSTR KTSTR KTETR KTSTR KETSTR
ER1 2 2 2 2 2
BR2
STR BOT KBSTR KESTR KBSTR KESTR KBSTR
ER 1 1oo 100 100 100 o0
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Figure B2. Page 2 from CYO1 w2_con.npt file.
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Figure B3. Page 3 from CYO1 w2_con.npt file.
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Figure B4. Page 4 from CYO1 w2_con.npt file.
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Figure B5. Page 5 from CYO1 w2_con.npt file.
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Figure B6. Page 6 from CYO1 w2_con.npt file.
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Figure B7. Page 7 from CYO1 w2_con.npt file.
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Figure B8. Page 8 from CYO1 w2_con.npt file.
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Figure B9. Page 9 from CYO1 w2_con.npt file.

WE 1 OFF OFF 0.00000 Q.10000 0.1 1.00000 1.00000 0.0 OFF

S0D RATE SCDT1 S00T2 S0DK1 SCDEZ

WE 1 4.000C0 30.0G00 0.10000 0.22000

S DEMAND 50D s0D 50D 50D 50D 5CD 50D S0D 50D
0.100C0 0.10CC0 0.10000 ©.10000 0.100C0H 0.10C00 0.10000 ©.1C000 0.10000
0.100C0 0.10000 0.10000 ©.10000 0.100CH 0.10C00 0.10000 0.10000 0.10000
0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000
Q.10000 0.10000 0.10000 0.12000 0.10000 0.10000 O.10000 0.102000 0.10000
0.10000 0.100C0 0.1Q000 0.10000 ©0.10000 0.10000 0.10000 0.10000 0.100400
0.100Cc0 0.19C00 010000 0.10C00 0O.100C0 0.10C00 O0.10000 0.10000 0.1C0400
0.10000 0.10000 0.1¢000 0.10000

REAERATICN TYPE ECHN# COEF1 CCEF2 COEF3 COEF4
3

WE 1 LAKE 0.00C00 0.00000 0.000C0 0.00C0C

2 B 1 REIFN. . ei i i e it e
rel.npt

OWD FTLE. ... CWDFN . .
gud. npt

QET FILE. ... ... oo QETFN . ...
qgt. npt

WSC FILE. .. .ttt it e e i aiaa e S

LCL-WSC-012314-ADJ . NFT

SHD FILE. . .. ...ttt ittt e en s SHDFN . . oot e e
LCL-SHD . NPT

BTH FILE... .. .. .. ... . . BTHFN. ...

WB 1 LCL-EATH-2001-FINAL. NPT

MET FILE. ... ...t rannnnns L = T

WB 1 LCL-MET-2001 . NET

B 4 I 2310

WE 1 ext_whl.npt

VPR FILE. ... .. it ci e caiann WPRFN . . oL v h it i s e e e e e

WE 1 vpr_wbhl.npt

B S I LPRFN. . .ot e e s e
WB 1 lpr_whl.npt

QIN FILE. . ..ttt it immeani e ieae e QINFN. .« ottt e it e
BR1 LCL-QIN-2001 NEBT

BRZ LCL-BR2-QIN. NPT

TIN FILE. .. ... it it ie e et TINFN . . ot e e e e
BR1 LCL-TIN-2001.NPT

ERZ2 LCL-BRZ-TIN.HPT

CIN FILE. . ...ttt e e e e CINFN. . e i et e ittt e
BR1 Cin brl.npt - not used

BRZ2 Cin_brZ.npt - not used

QOT FILE. . ..ottt e i e e e [
BR1 LCL-Q0UT-2001-55TR-012214 . NPT

ERZ got_brZ.npt - not used

QTR

TR1

TTR

TR1

CTR

TR1

Q0T

ER1 LCL-@DT-2001.NPT

BR2 gdt_br2.npt - not used

TDT FILE. ... ...t et TOTFDN . . .o oo e e e e
BR1

ER2 tdt_brZz.npt - not

CDT FILE. .. . it ettt iee e i L0 2
BR1 cdt brl.npt - net used

BRZ2 cdb_brZ.npt - net used

PRE FILE. ... .. ... 0t rnenaanans PREFN. . .0 it i i i e vt ie e e s
BR1 pre brl.npt - net used

BRZ pre_br2.npt - not ussd

TEE FILE. .. ... .. it e TERFN. . . ot e e e e
ER1 tpr brl.upt - nct used

BR2 tpr_br2.npt - not used

CER FILE. . .. ..ttt in i i e s CPRFN. . e it e e e e e
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Figure B10. Page10 from CYO1 w2_con.npt file.
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ERZ

EUH
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BR1
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CUH
ER1
ERZ2
EDH
BR1
ERZ
TDH

EBR1
ERZ

CDH
BR1
ER2

SHP
WB 1

PRF
WE 1

VPL
WE 1

CPL
WB 1

SFR
WB 1

FLX
WE 1

TSR

WD

<¢pr brl.npt not used
epr_brz.npt not used

FILE. ... ... .
euh brl.npt not used
euh_brz.npt not usead

FILE. ... i i e e
tuh brl . npt not used
tuh brz.npt not used

FILE. . .. .. o
zuh brl.npt not used
cuh_brz.npt not used

0 I
edh brl.npt - not used
edh_brz.npt not used

FILE. ... it r it c e an e
tdh brl . npt not used
tdh_brz.npt not used

FILE. ... e
=dh brl.npt not used
odh_brZ.npt - not used

FILE. ... .. i e e
LCL-C¥01-Runl3-snp.opt

S
LCL-CY01-Runl3-prf.opt

FILE. ... . i i e
LCL-CY01l-Runlz-vpl . w2l

FILE . ... i
LCL-£Y01-Runl3-cpl . opt

FILE. .. ... i
LCL-CY¥C01l-Runl3-spr. opt

FILE. .. ..t e e
LCL-CY01-Runlz-kfl.opt

FILE. ... .. i e
LCL-CYCO1-RUnl3-tar . opt

FILE. ... .. il
LCL-TYC1l-Runl3-wdo. opt




Table B1. Changes to calibration w2_con.npt file for other runs.

RUN YEAR TEMPI TSED

Calibration-2001 2001 5.444 11.984
Verification-2003 2003 5.667 12.513
Verification-2010 2010 5.167 11.743

-LT-8113/90ay3

Table B2. Inventory of files needed to run the LCLM.

Run Name CYO1_Run13 CYO3-Run03 CY10-Run02
File Type Calibration - 2001 Date Stamp Verification - 2003 Date Stamp Verification - 2010 Date Stamp
W2_CON.NPT - 1/23/14 3:15 pm - 2/11/14 11:35 am - 2/11/14 11:35 am
WSC File LCL-WSC-012314-ADJ.NPT 1/23/14 3:40 pm LCL-WSC-012314-ADJ.NPT 1/23/14 3:40 pm LCL-WSC-012314-ADJ.NPT | 1/23/14 3:40 pm
SHD File LCL-SHD.NPT 10/17/13 1:49 pm LCL-SHD.NPT 10/17/13 1:49 pm LCL-SHD.NPT 10/17/13 1:49 pm
BTH File LCL-BATH-2001-FINAL.NPT 11/15/13 2:22 pm LCL-BATH-2003-FINAL.NPT 11/15/13 2:24 pm LCL-BATH-2010-FINAL.NPT | 11/15/13 4:15 pm
MET File LCL-MET-2001.NPT 1/27/14 10:54 am LCL-MET-2003.NPT 1/27/14 10:56 am LCL-MET-2010.NPT 1/27/14 10:48 am
QIN File LCL-QIN-2001.NPT 1/22/13 10:52 am LCL-QIN-2003.NPT 12/17/12 4:07 pm LCL-QIN-2010.NPT 1/22/13 10:14 am
LCL-BR2-QIN.NPT 12/17/12 4:18 pm LCL-BR2-QIN.NPT 12/17/12 4:18 pm LCL-BR2-QIN.NPT 12/17/12 4:18 pm
TIN File LCL-TIN-2001.NPT 1/22/13 11:04 am LCL-TIN-2003.NPT 12/17/12 4:23 pm LCL-TIN-2010.NPT 1/22/13 11:03 am
LCL-BR2-TIN.NPT 12/17/12 4:19 pm LCL-BR2-TIN.NPT 12/17/12 4:19 pm LCL-BR2-TIN.NPT 12/17/12 4:19 pm
QOT File LCL-QOUT-2001-5STR-012214.NPT 1/22/14 1:03 pm LCL-QOUT-2003-5STR.NPT 10/22/13 2:48 pm LCL-QOUT-2010-5STR.NPT | 1/7/14 2:59 pm
QDT File LCL-QDT-2001.NPT 1/27/14 11:25 am LCL-QDT-2003-2.NPT 2/11/14 12:21 pm LCL-QDT-2010.NPT 2/11/14 12:23 pm
TDT File LCL-TDT-2001.NPT 1/22/13 11:04 am LCL-TDT-2003.NPT 1/22/13 11:04 am LCL-TDT-2010.NPT 1/22/13 11:03 am

c8



Table B3. Inventory of files needed to run the LCLPM (predictive model).

Run Name CY01-USGS-PortRun13 CY03-USGS-PortRun01 CY10-USGS-PortRun01
File Type Calibration - 2001 Date Stamp Verification - 2003 Date Stamp Verification - 2010 Date Stamp
W2_CON.NPT - 2/3/15 2:26 pm - 2/4/15 8:36 am - 2/4/2015 8:37 am
WSC File LCL-WSC-012314-ADJ.NPT 1/23/14 3:40 pm LCL-WSC-012314-ADJ.NPT 1/23/14 3:40 pm LCL-WSC-012314-ADJ.NPT | 1/23/14 3:40 pm
SHD File LCL-SHD.NPT 10/17/13 1:49 pm LCL-SHD.NPT 10/17/13 1:49 pm LCL-SHD.NPT 10/17/13 1:49 pm
BTH File LCL-BATH-2001-FINAL.NPT 11/15/13 2:22 pm LCL-BATH-2003-FINAL.NPT 11/15/13 2:24 pm LCL-BATH-2010-FINAL.NPT | 11/15/13 4:15 pm
MET File LCL-MET-2001.NPT 1/27/14 10:54 am LCL-MET-2003.NPT 1/27/14 10:56 am LCL-MET-2010.NPT 1/27/14 10:48 am
QIN File LCL-QIN-2001.NPT 1/22/13 10:52 am LCL-QIN-2003.NPT 12/17/12 4:07 pm LCL-QIN-2010.NPT 1/22/13 10:14 am
LCL-BR2-QIN.NPT 12/17/12 4:18 pm LCL-BR2-QIN.NPT 12/17/12 4:18 pm LCL-BR2-QIN.NPT 12/17/12 4:18 pm
TIN File LCL-TIN-2001.NPT 1/22/13 11:04 am LCL-TIN-2003.NPT 12/17/12 4:23 pm LCL-TIN-2010.NPT 1/22/13 11:03 am
LCL-BR2-TIN.NPT 12/17/12 4:19 pm LCL-BR2-TIN.NPT 12/17/12 4:19 pm LCL-BR2-TIN.NPT 12/17/12 4:19 pm
QOT File LCL-QOUT-2001.NPT 5/23/14 9:10 am LCL-QOUT-2003.NPT 10/27/14 3:14 pm LCL-QOUT-2010.NPT 10/31/14 2:15 pm
QDT File LCL-QDT-2001.NPT 1/27/14 11:25 am LCL-QDT-2003-2.NPT 2/11/14 12:21 pm LCL-QDT-2010.NPT 2/11/14 12:23 pm
TDT File LCL-TDT-2001.NPT 1/22/13 11:04 am LCL-TDT-2003.NPT 1/22/13 11:04 am LCL-TDT-2010.NPT 1/22/13 11:03 am
W2_SELECTIVE.NPT | - 2/3/15 2:25 pm - 2/3/15 2:25 pm - 2/3/15 2:25 pm

**Note: The same w2_selective.npt file is used for all 3 cases!

-LT-8113/90ay3

€8
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Appendix C: LCLM and LCLPM Files

This appendix serves to provide a description of each file needed to run the
model. The files are grouped by year. As an aside, ERDC typically has the
following file organization system (see Table C1).

Table C1. Typical File Organization

Cy01

Main folder for year identification for the particular model.
Most models will be designed to run with multiple years.

Results

Upon running the model, the results are moved out of the
executables folder and into their own folder; typically, these
folders are named something like CYXX_RunXX. NOTE:
Always copy the control file (and any needed selective
withdrawal files) used for the run into the results folder so
that you can duplicate the run in the future if necessary.

Executables

This is where all of the necessary files needed to run the
model are located: W2 executables, Inflows, Outflows,
Temperature/Concentration files, Met files, Bathymetry, etc.

Table C2. Files needed to run LCL model for each year.
File Description CYo1 CY03 CY10
Graph File graph.npt graph.npt graph.npt
Control File w2_con.npt w2_con.npt w2_con.npt
Bathymetry File LCL-BATH-2001-FINAL.NPT LCL-BATH-2003-FINAL.NPT LCL-BATH-2010-FINAL.NPT
Meteorology File LCL-MET-2001.NPT LCL-MET-2003.NPT LCL-MET-2010.NPT

Wind Sheltering Coefficient File

LCL-WSC-012314-ADJ.NPT

LCL-WSC-012314-ADJ.NPT

LCL-WSC-012314-ADJ.NPT

Shade File LCL-SHD.NPT LCL-SHD.NPT LCL-SHD.NPT
Upstream Inflow File LCL-QIN-2001.NPT LCL-QIN-2003.NPT LCL-QIN-2010.NPT
Upstream Temperature File LCL-TIN-2001.NPT LCL-TIN-2003.NPT LCL-TIN-2010.NPT

Branch 2 Inflow File (zero)

LCL-BR2-QIN.NPT

LCL-BR2-QIN.NPT

LCL-BR2-QIN.NPT

Branch 2 Temperature File
(placeholder)

LCL-BR2-TIN.NPT

LCL-BR2-TIN.NPT

LCL-BR2-TIN.NPT

Dam Outflow File LCL-QOUT-2001-5STR.NPT LCL-QOUT-2003-5STR.NPT LCL-QOUT-2010-5STR.NPT
Distributed Tributary Inflow File LCL-QDT-2001.NPT LCL-QDT-2003-2.NPT LCL-QDT-2010.NPT
Distributed Tributary Temperature LCL-TDT-2001.NPT LCL-TDT-2003.NPT LCL-TDT-2010.NPT

File (duplicated upstream temps)
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Table C3. Files needed to run LCLPM model for each year.

File Description CYo1 CY03 CY10
Graph File graph.npt graph.npt graph.npt
Control File w2_con.npt w2_con.npt w2_con.npt

Selective Withdrawal
Control File

w2_selective.npt

w2_selective.npt

w2_selective.npt

Target Temperature
File

dynsplit_selectiveX.npt

dynsplit_selectiveX.npt

dynsplit_selectiveX.npt

Dam Outflow File

LCL-QOUT-2001.NPT

LCL-QOUT-2003.NPT

LCL-QOUT-2010.NPT

Distributed Tributary
Inflow File

LCL-QDT-2001.NPT

LCL-QDT-2003-2.NPT

LCL-QDT-2010.NPT

Distributed Tributary
Temperature File
(duplicated upstream
temps)

LCL-TDT-2001.NPT

LCL-TDT-2003.NPT

LCL-TDT-2010.NPT

**NOTE: All other files are the same as found in Table C2
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